Problem1978--Seating On Bus

1978: Seating On Bus

Time Limit: 2 Sec  Memory Limit: 256 MB
Submit: 0  Solved: 0
[Submit] [Status] [Web Board] [Creator:]

Description

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Consider 2n rows of the seats in a bus. n rows of the seats on the left and n rows of the seats on the right. Each row can be filled by two people. So the total capacity of the bus is 4n.

Consider that m (m≤4n) people occupy the seats in the bus. The passengers entering the bus are numbered from 1 to m (in the order of their entering the bus). The pattern of the seat occupation is as below:

1-st row left window seat, 1-st row right window seat, 2-nd row left window seat, 2-nd row right window seat, ... , n-th row left window seat, n-th row right window seat.

After occupying all the window seats (for m>2n) the non-window seats are occupied:

1-st row left non-window seat, 1-st row right non-window seat, ... , n-th row left non-window seat, n-th row right non-window seat.

All the passengers go to a single final destination. In the final destination, the passengers get off in the given order.

1-st row left non-window seat, 1-st row left window seat, 1-st row right non-window seat, 1-st row right window seat, ... , n-th row left non-window seat, n-th row left window seat, n-th row right non-window seat, n-th row right window seat.

The seating for n=9 and m=36.

You are given the values n and m. Output m numbers from 1 to m, the order in which the passengers will get off the bus.

Input

The only line contains two integers, n and m (1≤n≤100,1≤m≤4n) − the number of pairs of rows and the number of passengers.

Output

Print m distinct integers from 1 to m − the order in which the passengers will get off the bus.

Examples
Input
2 7
Output
5 1 6 2 7 3 4
Input
9 36
Output
19 1 20 2 21 3 22 4 23 5 24 6 25 7 26 8 27 9 28 10 29 11 30 12 31 13 32 14 33 15 34 16 35 17 36 18

Source/Category