You are given two arithmetic progressions: a1k+b1 and a2l+b2. Find the number of integers x such that L≤x≤R and x=a1k'+b1=a2l'+b2, for some integers k',l'≥0.
The only line contains six integers a1,b1,a2,b2,L,R (0<a1,a2≤2·109,-2·109≤b1,b2,L,R≤2·109,L≤R).
Print the desired number of integers x.
2 0 3 3 5 21
3
2 4 3 0 6 17
2