Problem1076--#2145. 「SHOI2017」分手是祝愿

1076: #2145. 「SHOI2017」分手是祝愿

Time Limit: 1 Sec  Memory Limit: 512 MB
Submit: 0  Solved: 0
[Submit] [Status] [Web Board] [Creator:]

Description

Zeit und Raum trennen dich und mich.
时空将你我分开。

B 君在玩一个游戏,这个游戏由 nnn 个灯和 nnn 个开关组成,给定这 nnn 个灯的初始状态,下标为从 111nnn 的正整数。

每个灯有两个状态亮和灭,我们用 111 来表示这个灯是亮的,用 000 表示这个灯是灭的,游戏的目标是使所有灯都灭掉。

但是当操作第 iii 个开关时,所有编号为 iii 的约数(包括 111iii)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮。

B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机操作一个开关,直到所有灯都灭掉。

这个策略需要的操作次数很多,B 君想到这样的一个优化。如果当前局面,可以通过操作小于等于 kkk 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个策略显然小于等于 kkk 步)操作这些开关。

B 君想知道按照这个策略(也就是先随机操作,最后小于等于 kkk 步,使用操作次数最小的操作方法)的操作次数的期望。

这个期望可能很大,但是 B 君发现这个期望乘以 nnn 的阶乘一定是整数,所以他只需要知道这个整数对 100003100003100003 取模之后的结果。

输入格式

第一行两个整数 n,kn, kn,k。 接下来一行 nnn 个整数,每个整数是 000 或者 111,其中第 iii 个整数表示第 iii 个灯的初始情况。

输出格式

输出一行,为操作次数的期望乘以 nnn 的阶乘对 100003100003100003 取模之后的结果。

样例

样例输入 1

4 0
0 0 1 1

样例输出 1

512

样例输入 2

5 0
1 0 1 1 1

样例输出 2

5120

数据范围与提示

对于 0%0\%0% 的测试点,和样例一模一样;
对于另外 30%30\%30% 的测试点,n≤10n \leq 10n10
对于另外 20%20\%20% 的测试点,n≤100n \leq 100n100
对于另外 30%30\%30% 的测试点,n≤1000n \leq 1000n1000
对于 100%100\%100% 的测试点,1≤n≤100000,0≤k≤n1 \leq n \leq 100000, 0 \leq k \leq n1n100000,0kn
对于以上每部分测试点,均有一半的数据满足 k=nk = nk=n

Source/Category