这些点可以用k个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当k=2时,可用如图二的两个矩形s1,s2覆盖,s1,s2面积和为4。问题是当n个点坐标和k给出后,怎样才能使得覆盖所有点的k个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
4 2 1 1 2 2 3 6 0 7
4